The simple non-Lie Malcev algebra as a Lie–Yamaguti algebra
نویسندگان
چکیده
منابع مشابه
The Simple Non-lie Malcev Algebra as a Lie-yamaguti Algebra
The simple 7-dimensional Malcev algebra M is isomorphic to the irreducible sl(2,C)-module V (6) with binary product [x, y] = α(x ∧ y) defined by the sl(2,C)-module morphism α : Λ2V (6)→ V (6). Combining this with the ternary product (x, y, z) = β(x∧y) ·z defined by the sl(2,C)-module morphism β : Λ2V (6)→ V (2) ≈ sl(2,C) gives M the structure of a generalized Lie triple system, or Lie-Yamaguti ...
متن کاملA Bound for the Nilpotency Class of a Lie Algebra
In the present paper, we prove that if L is a nilpotent Lie algebra whose proper subalge- bras are all nilpotent of class at most n, then the class of L is at most bnd=(d 1)c, where b c denotes the integral part and d is the minimal number of generators of L.
متن کاملLie triple derivation algebra of Virasoro-like algebra
Let $mathfrak{L}$ be the Virasoro-like algebra and $mathfrak{g}$ itsderived algebra, respectively. We investigate the structure of the Lie triplederivation algebra of $mathfrak{L}$ and $mathfrak{g}$. We provethat they are both isomorphic to $mathfrak{L}$, which provides twoexamples of invariance under triple derivation.
متن کاملThe Lie Algebra of Smooth Sections of a T-bundle
In this article, we generalize the concept of the Lie algebra of vector fields to the set of smooth sections of a T-bundle which is by definition a canonical generalization of the concept of a tangent bundle. We define a Lie bracket multiplication on this set so that it becomes a Lie algebra. In the particular case of tangent bundles this Lie algebra coincides with the Lie algebra of vector fie...
متن کاملOn dimensions of derived algebra and central factor of a Lie algebra
Some Lie algebra analogues of Schur's theorem and its converses are presented. As a result, it is shown that for a capable Lie algebra L we always have dim L=Z(L) 2(dim(L2))2. We also give give some examples sup- porting our results.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Algebra
سال: 2012
ISSN: 0021-8693
DOI: 10.1016/j.jalgebra.2012.02.018